Alpha diversity
# Calculate Hill numbers
richness <- genome_counts_filt %>%
column_to_rownames(var = "genome") %>%
dplyr::select(where(~ !all(. == 0))) %>%
hilldiv(., q = 0) %>%
t() %>%
as.data.frame() %>%
dplyr::rename(richness = 1) %>%
rownames_to_column(var = "sample")
neutral <- genome_counts_filt %>%
column_to_rownames(var = "genome") %>%
dplyr::select(where(~ !all(. == 0))) %>%
hilldiv(., q = 1) %>%
t() %>%
as.data.frame() %>%
dplyr::rename(neutral = 1) %>%
rownames_to_column(var = "sample")
phylogenetic <- genome_counts_filt %>%
column_to_rownames(var = "genome") %>%
dplyr::select(where(~ !all(. == 0))) %>%
hilldiv(., q = 1, tree = genome_tree) %>%
t() %>%
as.data.frame() %>%
dplyr::rename(phylogenetic = 1) %>%
rownames_to_column(var = "sample")
# Aggregate basal GIFT into elements
dist <- genome_gifts %>%
to.elements(., GIFT_db) %>%
traits2dist(., method = "gower")
functional <- genome_counts_filt %>%
column_to_rownames(var = "genome") %>%
dplyr::select(where(~ !all(. == 0))) %>%
hilldiv(., q = 1, dist = dist) %>%
t() %>%
as.data.frame() %>%
dplyr::rename(functional = 1) %>%
rownames_to_column(var = "sample") %>%
mutate(functional = if_else(is.nan(functional), 1, functional))
# Merge all metrics
alpha_div <- richness %>%
full_join(neutral, by = join_by(sample == sample)) %>%
full_join(phylogenetic, by = join_by(sample == sample)) %>%
full_join(functional, by = join_by(sample == sample))
#Richness
alpha_div %>%
pivot_longer(-sample, names_to = "metric", values_to = "value") %>%
left_join(., sample_metadata, by = join_by(sample == sample)) %>%
filter(treatment != "T0") %>%
filter(metric=="richness") %>%
ggplot(aes(y = value, x = treatment, group=treatment, color=treatment, fill=treatment)) +
geom_boxplot(outlier.shape = NA) +
geom_jitter(alpha=0.5) +
scale_color_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC3","#AFD699")) +
scale_fill_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC350","#AFD69950")) +
facet_wrap(. ~ trial, scales = "fixed", ncol=5) +
coord_cartesian(xlim = c(1, NA)) +
theme_classic() +
theme(
strip.background = element_blank(),
panel.grid.minor.x = element_line(size = .1, color = "grey"),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1)
)
#Neutral
alpha_div %>%
pivot_longer(-sample, names_to = "metric", values_to = "value") %>%
left_join(., sample_metadata, by = join_by(sample == sample)) %>%
filter(treatment != "T0") %>%
filter(metric=="neutral") %>%
ggplot(aes(y = value, x = treatment, group=treatment, color=treatment, fill=treatment)) +
geom_boxplot(outlier.shape = NA) +
geom_jitter(alpha=0.5) +
scale_color_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC3","#AFD699")) +
scale_fill_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC350","#AFD69950")) +
facet_wrap(. ~ trial, scales = "fixed", ncol=5) +
coord_cartesian(xlim = c(1, NA)) +
theme_classic() +
theme(
strip.background = element_blank(),
panel.grid.minor.x = element_line(size = .1, color = "grey"),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1)
)
#Phylogenetic
alpha_div %>%
pivot_longer(-sample, names_to = "metric", values_to = "value") %>%
left_join(., sample_metadata, by = join_by(sample == sample)) %>%
filter(treatment != "T0") %>%
filter(metric=="phylogenetic") %>%
ggplot(aes(y = value, x = treatment, group=treatment, color=treatment, fill=treatment)) +
geom_boxplot(outlier.shape = NA) +
geom_jitter(alpha=0.5) +
scale_color_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC3","#AFD699")) +
scale_fill_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC350","#AFD69950")) +
facet_wrap(. ~ trial, scales = "fixed", ncol=5) +
coord_cartesian(xlim = c(1, NA)) +
theme_classic() +
theme(
strip.background = element_blank(),
panel.grid.minor.x = element_line(size = .1, color = "grey"),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1)
)
#Functional
alpha_div %>%
pivot_longer(-sample, names_to = "metric", values_to = "value") %>%
left_join(., sample_metadata, by = join_by(sample == sample)) %>%
filter(treatment != "T0") %>%
filter(metric=="functional") %>%
ggplot(aes(y = value, x = treatment, group=treatment, color=treatment, fill=treatment)) +
geom_boxplot(outlier.shape = NA) +
geom_jitter(alpha=0.5) +
scale_color_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC3","#AFD699")) +
scale_fill_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC350","#AFD69950")) +
facet_wrap(. ~ trial, scales = "fixed", ncol=5) +
coord_cartesian(xlim = c(1, NA)) +
theme_classic() +
theme(
strip.background = element_blank(),
panel.grid.minor.x = element_line(size = .1, color = "grey"),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1)
)