Chapter 3 MAG catalogue

load("data/data.Rdata")

3.1 Genome phylogeny

# Generate the phylum color heatmap
phylum_heatmap <- read_tsv("https://raw.githubusercontent.com/earthhologenome/EHI_taxonomy_colour/main/ehi_phylum_colors.tsv") %>%
    right_join(genome_metadata, by=join_by(phylum == phylum)) %>%
    arrange(match(genome, genome_tree$tip.label)) %>%
    select(genome,phylum) %>%
    mutate(phylum = factor(phylum, levels = unique(phylum))) %>%
    column_to_rownames(var = "genome")

# Generate  basal tree
circular_tree <- force.ultrametric(genome_tree, method="extend") %>% # extend to ultrametric for the sake of visualisation
    ggtree(., layout="fan", open.angle=10, size=0.5)
***************************************************************
*                          Note:                              *
*    force.ultrametric does not include a formal method to    *
*    ultrametricize a tree & should only be used to coerce    *
*   a phylogeny that fails is.ultrametric due to rounding --  *
*    not as a substitute for formal rate-smoothing methods.   *
***************************************************************
# Add phylum ring
circular_tree <- gheatmap(circular_tree, phylum_heatmap, offset=0.55, width=0.1, colnames=FALSE) +
        scale_fill_manual(values=phylum_colors) +
        geom_tiplab2(size=1, hjust=-0.1) +
        theme(legend.position = "none", plot.margin = margin(0, 0, 0, 0), panel.margin = margin(0, 0, 0, 0))

# Flush color scale to enable a new color scheme in the next ring
circular_tree <- circular_tree + new_scale_fill()

# Add completeness ring
circular_tree <- circular_tree +
        new_scale_fill() +
        scale_fill_gradient(low = "#d1f4ba", high = "#f4baba") +
        geom_fruit(
                data=genome_metadata,
                geom=geom_bar,
                mapping = aes(x=completeness, y=genome, fill=contamination),
                offset = 0.55,
                orientation="y",
              stat="identity")

# Add genome-size ring
circular_tree <-  circular_tree +
        new_scale_fill() +
        scale_fill_manual(values = "#cccccc") +
        geom_fruit(
             data=genome_metadata,
             geom=geom_bar,
             mapping = aes(x=length, y=genome),
                 offset = 0.05,
                 orientation="y",
         stat="identity")

# Add text
circular_tree <-  circular_tree +
        annotate('text', x=2.7, y=0, label='            Phylum', family='arial', size=3.5) +
        annotate('text', x=3.1, y=0, label='                         Genome quality', family='arial', size=3.5) +
        annotate('text', x=3.5, y=0, label='                     Genome size', family='arial', size=3.5)

#Plot circular tree
circular_tree %>% open_tree(30) %>% rotate_tree(90)

3.2 Genome quality

tibble(Completeness=
         paste0(round(genome_metadata$completeness %>% mean(),2),
                "±",
                round(genome_metadata$completeness %>% sd(),2)),
       Contamination=
           paste0(round(genome_metadata$contamination %>% mean(),2),
                "±",
                round(genome_metadata$contamination %>% sd(),2))) %>%
  tt()
tinytable_ptfabd24mfk5q63ql2lr
Completeness Contamination
83.77±12.14 3.85±4.47
#Generate quality biplot
genome_biplot <- genome_metadata %>%
  select(c(genome,domain,phylum,completeness,contamination,length)) %>%
  arrange(match(genome, rev(genome_tree$tip.label))) %>% #sort MAGs according to phylogenetic tree
  ggplot(aes(x=completeness,y=contamination,size=length,color=phylum)) +
              geom_point(alpha=0.7) +
                    xlim(c(50,100)) +
                    ylim(c(10,0)) +
                    scale_color_manual(values=phylum_colors) +
                    labs(y= "Contamination", x = "Completeness") +
                    theme_classic() +
                    theme(legend.position = "none")

#Generate contamination boxplot
genome_contamination <- genome_metadata %>%
            ggplot(aes(y=contamination)) +
                    ylim(c(10,0)) +
                    geom_boxplot(colour = "#999999", fill="#cccccc") +
                    theme_void() +
                    theme(legend.position = "none",
                        axis.title.x = element_blank(),
                        axis.title.y = element_blank(),
                        axis.text.y=element_blank(),
                        axis.ticks.y=element_blank(),
                        axis.text.x=element_blank(),
                        axis.ticks.x=element_blank(),
                        plot.margin = unit(c(0, 0, 0.40, 0),"inches")) #add bottom-margin (top, right, bottom, left)

#Generate completeness boxplot
genome_completeness <- genome_metadata %>%
        ggplot(aes(x=completeness)) +
                xlim(c(50,100)) +
                geom_boxplot(colour = "#999999", fill="#cccccc") +
                theme_void() +
                theme(legend.position = "none",
                    axis.title.x = element_blank(),
                    axis.title.y = element_blank(),
                    axis.text.y=element_blank(),
                    axis.ticks.y=element_blank(),
                    axis.text.x=element_blank(),
                    axis.ticks.x=element_blank(),
                    plot.margin = unit(c(0, 0, 0, 0.50),"inches")) #add left-margin (top, right, bottom, left)

#Render composite figure
grid.arrange(grobs = list(genome_completeness,genome_biplot,genome_contamination),
        layout_matrix = rbind(c(1,1,1,1,1,1,1,1,1,1,1,4),
                              c(2,2,2,2,2,2,2,2,2,2,2,3),
                              c(2,2,2,2,2,2,2,2,2,2,2,3),
                              c(2,2,2,2,2,2,2,2,2,2,2,3),
                              c(2,2,2,2,2,2,2,2,2,2,2,3),
                              c(2,2,2,2,2,2,2,2,2,2,2,3),
                              c(2,2,2,2,2,2,2,2,2,2,2,3),
                              c(2,2,2,2,2,2,2,2,2,2,2,3),
                              c(2,2,2,2,2,2,2,2,2,2,2,3),
                              c(2,2,2,2,2,2,2,2,2,2,2,3),
                              c(2,2,2,2,2,2,2,2,2,2,2,3),
                              c(2,2,2,2,2,2,2,2,2,2,2,3)))

3.3 Functional overview

# Aggregate basal GIFT into elements
function_table <- genome_gifts %>%
    to.elements(., GIFT_db)

# Generate  basal tree
function_tree <- force.ultrametric(genome_tree, method="extend") %>%
                ggtree(., size = 0.3) 
***************************************************************
*                          Note:                              *
*    force.ultrametric does not include a formal method to    *
*    ultrametricize a tree & should only be used to coerce    *
*   a phylogeny that fails is.ultrametric due to rounding --  *
*    not as a substitute for formal rate-smoothing methods.   *
***************************************************************
#Add phylum colors next to the tree tips
function_tree <- gheatmap(function_tree, phylum_heatmap, offset=0, width=0.1, colnames=FALSE) +
            scale_fill_manual(values=phylum_colors) +
            labs(fill="Phylum")

#Reset fill scale to use a different colour profile in the heatmap
function_tree <- function_tree + new_scale_fill()

#Add functions heatmap
function_tree <- gheatmap(function_tree, function_table, offset=0.5, width=3.5, colnames=FALSE) +
            vexpand(.08) +
            coord_cartesian(clip = "off") +
            scale_fill_gradient(low = "#f4f4f4", high = "steelblue", na.value="white") +
            labs(fill="GIFT")

#Reset fill scale to use a different colour profile in the heatmap
function_tree <- function_tree + new_scale_fill()

# Add completeness barplots
function_tree <- function_tree +
            geom_fruit(data=genome_metadata,
            geom=geom_bar,
            grid.params=list(axis="x", text.size=2, nbreak = 1),
            axis.params=list(vline=TRUE),
            mapping = aes(x=length, y=genome, fill=completeness),
                 offset = 3.8,
                 orientation="y",
                 stat="identity") +
            scale_fill_gradient(low = "#cf8888", high = "#a2cc87") +
            labs(fill="Genome\ncompleteness")

function_tree

3.4 Functional ordination

# Generate the tSNE ordination
tSNE_function <- Rtsne(X=function_table, dims = 2, check_duplicates = FALSE)

# Plot the ordination
function_ordination <- tSNE_function$Y %>%
                as.data.frame() %>%
                mutate(genome=rownames(function_table)) %>%
                inner_join(genome_metadata, by="genome") %>%
                rename(tSNE1="V1", tSNE2="V2") %>%
                select(genome,phylum,tSNE1,tSNE2, length) %>%
                ggplot(aes(x = tSNE1, y = tSNE2, color = phylum, size=length))+
                            geom_point(shape=16, alpha=0.7) +
                            scale_color_manual(values=phylum_colors) +
                            theme_minimal() +
                labs(color="Phylum", size="Genome size") +
                guides(color = guide_legend(override.aes = list(size = 5))) # enlarge Phylum dots in legend

function_ordination