Chapter 6 Beta diversity
beta_q0n <- genome_counts_filt %>%
column_to_rownames(., "genome") %>%
filter(rowSums(. != 0, na.rm = TRUE) > 0) %>%
select_if(~!all(. == 0)) %>%
hillpair(., q = 0)
beta_q1n <- genome_counts_filt %>%
column_to_rownames(., "genome") %>%
filter(rowSums(. != 0, na.rm = TRUE) > 0) %>%
select_if(~!all(. == 0)) %>%
hillpair(., q = 1)
beta_q1p <- genome_counts_filt %>%
column_to_rownames(., "genome") %>%
filter(rowSums(. != 0, na.rm = TRUE) > 0) %>%
select_if(~!all(. == 0)) %>%
hillpair(., q = 1, tree = genome_tree)
beta_q1f <- genome_counts_filt %>%
column_to_rownames(., "genome") %>%
filter(rowSums(. != 0, na.rm = TRUE) > 0) %>%
select_if(~!all(. == 0)) %>%
hillpair(., q = 1, dist = dist)
6.0.1 Richness diversity plot
beta_q0n$S %>%
vegan::metaMDS(., trymax = 500, k = 2, trace=0) %>%
vegan::scores() %>%
as_tibble(., rownames = "sample") %>%
dplyr::left_join(sample_metadata, by = join_by(sample == sample)) %>%
group_by(treatment,trial) %>%
mutate(x_cen = mean(NMDS1, na.rm = TRUE)) %>%
mutate(y_cen = mean(NMDS2, na.rm = TRUE)) %>%
ungroup() %>%
filter(treatment != "T0") %>%
ggplot(aes(x = NMDS1, y = NMDS2, color = treatment, fill = treatment, shape = trial)) +
scale_color_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC3","#AFD699")) +
scale_fill_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC350","#AFD69950")) +
geom_point(size = 4) +
# stat_ellipse(aes(color = beta_q1n_nmds$Groups))+
geom_segment(aes(x = x_cen, y = y_cen, xend = NMDS1, yend = NMDS2), alpha = 0.9) +
theme_classic() +
theme(
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12),
axis.title = element_text(size = 20, face = "bold"),
axis.text = element_text(face = "bold", size = 18),
panel.background = element_blank(),
axis.line = element_line(size = 0.5, linetype = "solid", colour = "black"),
legend.text = element_text(size = 16),
legend.title = element_text(size = 18),
legend.position = "right", legend.box = "vertical"
) +
labs(shape="Individual")
6.0.2 Neutral diversity plot
beta_q1n$S %>%
vegan::metaMDS(., trymax = 500, k = 2, trace=0) %>%
vegan::scores() %>%
as_tibble(., rownames = "sample") %>%
dplyr::left_join(sample_metadata, by = join_by(sample == sample)) %>%
group_by(treatment,trial) %>%
mutate(x_cen = mean(NMDS1, na.rm = TRUE)) %>%
mutate(y_cen = mean(NMDS2, na.rm = TRUE)) %>%
ungroup() %>%
filter(treatment != "T0") %>%
ggplot(aes(x = NMDS1, y = NMDS2, color = treatment, fill = treatment, shape = trial)) +
scale_color_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC3","#AFD699")) +
scale_fill_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC350","#AFD69950")) +
geom_point(size = 4) +
# stat_ellipse(aes(color = beta_q1n_nmds$Groups))+
geom_segment(aes(x = x_cen, y = y_cen, xend = NMDS1, yend = NMDS2), alpha = 0.9) +
theme_classic() +
theme(
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12),
axis.title = element_text(size = 20, face = "bold"),
axis.text = element_text(face = "bold", size = 18),
panel.background = element_blank(),
axis.line = element_line(size = 0.5, linetype = "solid", colour = "black"),
legend.text = element_text(size = 16),
legend.title = element_text(size = 18),
legend.position = "right", legend.box = "vertical"
) +
labs(shape="Individual")
6.0.3 Phylogenetic diversity plot
beta_q1p$S %>%
vegan::metaMDS(., trymax = 500, k = 2, trace=0) %>%
vegan::scores() %>%
as_tibble(., rownames = "sample") %>%
dplyr::left_join(sample_metadata, by = join_by(sample == sample)) %>%
group_by(treatment,trial) %>%
mutate(x_cen = mean(NMDS1, na.rm = TRUE)) %>%
mutate(y_cen = mean(NMDS2, na.rm = TRUE)) %>%
ungroup() %>%
filter(treatment != "T0") %>%
ggplot(aes(x = NMDS1, y = NMDS2, color = treatment, fill = treatment, shape = trial)) +
scale_color_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC3","#AFD699")) +
scale_fill_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC350","#AFD69950")) +
geom_point(size = 4) +
# stat_ellipse(aes(color = beta_q1n_nmds$Groups))+
geom_segment(aes(x = x_cen, y = y_cen, xend = NMDS1, yend = NMDS2), alpha = 0.9) +
theme_classic() +
theme(
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12),
axis.title = element_text(size = 20, face = "bold"),
axis.text = element_text(face = "bold", size = 18),
panel.background = element_blank(),
axis.line = element_line(size = 0.5, linetype = "solid", colour = "black"),
legend.text = element_text(size = 16),
legend.title = element_text(size = 18),
legend.position = "right", legend.box = "vertical"
) +
labs(shape="Individual")
6.0.4 Functional diversity plot
beta_q1f$S %>%
vegan::metaMDS(., trymax = 500, k = 2, trace=0) %>%
vegan::scores() %>%
as_tibble(., rownames = "sample") %>%
dplyr::left_join(sample_metadata, by = join_by(sample == sample)) %>%
group_by(treatment,trial) %>%
mutate(x_cen = mean(NMDS1, na.rm = TRUE)) %>%
mutate(y_cen = mean(NMDS2, na.rm = TRUE)) %>%
ungroup() %>%
filter(treatment != "T0") %>%
ggplot(aes(x = NMDS1, y = NMDS2, color = treatment, fill = treatment, shape = trial)) +
scale_color_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC3","#AFD699")) +
scale_fill_manual(name="Treatment",
breaks=c("T1","T3"),
values=c("#6A9AC350","#AFD69950")) +
geom_point(size = 4) +
# stat_ellipse(aes(color = beta_q1n_nmds$Groups))+
geom_segment(aes(x = x_cen, y = y_cen, xend = NMDS1, yend = NMDS2), alpha = 0.9) +
theme_classic() +
theme(
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size = 12),
axis.title = element_text(size = 20, face = "bold"),
axis.text = element_text(face = "bold", size = 18),
panel.background = element_blank(),
axis.line = element_line(size = 0.5, linetype = "solid", colour = "black"),
legend.text = element_text(size = 16),
legend.title = element_text(size = 18),
legend.position = "right", legend.box = "vertical"
) +
labs(shape="Individual")